Volume 1 Issue 3 April 1996 ## **ARE YOU SPINNING YOUR WHEELS?** Recent advances in today's textile machinery have pushing the relationship between processing speeds and production to it's upper limits. If processing speeds are determine by the natural charastic of a cotton fiber, is this to say that using today's high speed cleaning and spinning machinery, spinning efficiencies have reached their limits? **GINTEXTM** Fiber Conditioner preserves fiber quality during processing and improves preparation allowing your spinning mill to increase it's production without the adverse affect of poor yarn quality. As seen in tables 1 and 2, tests show cotton conditioned with **GINTEXTM** improved fiber preparation through the cleaning, carding, drawing, and roving process resulting in fewer ends down and improved yarn quality. | Mill Test 1 | Control | GINTEX | Change | |---|--|---|--| | Cards
C.V. % Uster
Neps 100"2 | 4.38
21.34 | 4.45
21.08 | 1.59%
-1.21% | | Combing 1
C.V. % Uster | 4.56 | 4.42 | -3.07 | | Combing 2
C.V. % Uster | 4.01 | 3.76 | -6.23% | | Roving
C.V. % Uster
Breaks/ 100F/Hour | 5.83
10.42 | 5.66
7.34 | -2.91
-29.5% | | Yarn Ne 24 C.V. % Uster Thin Places Thick Places Neps Breaks/ 1000F/Hour % C.V. Yarn | 16.32
24
382
383
37.70
1.75 | 15.51
7
279
290
24.47
1.44 | -4.96
-70.8%
-26.9%
-24.28
-35%
-17.71% | "Department of quality control certified no difference in dye intake between control and treated yarn samples." ## MECHANICS GINTEXTM is a non oil based/non silicon based *Cotton Fiber Conditioner* which reduce fiber to machinery friction. As a result fiber and foreign matter move freely without static electricity in the direction intended. A uniform flow of cotton improves processing efficiencies and reduces fiber damage caused by a harsh processing environment. ## REPEATABILITY | RS Ne 24 | Control | GIN-
TEX | CHANGE | |-----------------------------|--------------|--------------|--------------| | Cleaning
Efficiency | 40.6% | 51.5% | +27% | | Carding
Breaks
Neps | 0.13
10.4 | 0.08
7.9 | -38%
-24% | | Combing
Breaks
Neps | 0.81
19.6 | 0.25
15.7 | -69%
-20% | | Drawing
Breaks | 3.0 | 3.5 | +16% | | Roving
Breaks | 58 | 27 | -53% | | Yarn
Breaks /10
00/FH | 85 | 64 | -24% | TABLE 2: MILL 2 "With the application of GINTEX we noticed a significant difference in comparative results: 25% reduction in returnable filter fiber as well as a 25% decrease in dust and loose fibers surrounding the areas significant to the spinning process. Uster analysis recorded a 6% increase in yarn strength, 13% increase in elongation, and a 15% decrease in CV%" Control of Quality ## Nep Reduction Through improved cleaning and a gentler processing environment, GINTEX decreases the number of neps throughout | | Control | | GINTEX | Change | |-------|---------|----|--------|--------| | Cards | | | | | | | 1 | 48 | 37 | -23% | | | 3 | 38 | 37 | -2.6% | | | 4 | 47 | 37 | -21.3% | | | 6 | 47 | 39 | -17% | | | 7 | 38 | 34 | -11% | | Yarn | | 27 | 22 | -19% |